Comparison of Reconstruction Algorithms for Images from Sparse-Aperture Systems
نویسندگان
چکیده
Telescopes and imaging interferometers with sparsely filled apertures can be lighter weight and less expensive than conventional filled-aperture telescopes. However, their greatly reduced MTF's cause significant blurring and loss of contrast in the collected imagery. Image reconstruction algorithms can correct the blurring completely when the signal-to-noise ratio (SNR) is high, but only partially when the SNR is low. This paper compares both linear (Wiener) and nonlinear (iterative maximum likelihood) algorithms for image reconstruction under a variety of circumstances. These include high and low SNR, Gaussian noise and Poisson-noise dominated, and a variety of aperture configurations and degrees of sparsity. The quality metric employed to compare algorithms is image utility as quantified by the National Imagery Interpretability Rating Scale (NIIRS). On balance, a linear reconstruction algorithm with a power-law power-spectrum estimate performed best.
منابع مشابه
Fast Reconstruction of SAR Images with Phase Error Using Sparse Representation
In the past years, a number of algorithms have been introduced for synthesis aperture radar (SAR) imaging. However, they all suffer from the same problem: The data size to process is considerably large. In recent years, compressive sensing and sparse representation of the signal in SAR has gained a significant research interest. This method offers the advantage of reducing the sampling rate, bu...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کاملExtended ratio edge detector for despeckled SAR image evaluation
Synthetic aperture radar (SAR) images due to the usage of coherent imaging systems are affected by speckle. So lots of despeckling filters have been introduced up to now to suppress the speckle. Hence, objective and subjective evaluation of the denoised SAR images becomes a necessity. Thereby lots of objective evaluating estimators are introduced to evaluate the performance of despeckling filte...
متن کاملSynthetic Aperture Radar Image Formation Via Sparse Decomposition
Spotlight mode synthetic aperture radar (SAR) imaging involves a tomographic reconstruction from projections, necessitating acquisition of large amounts of data in order to form a moderately sized image. Since typical SAR sensors are hosted on mobile platforms, it is common to have limitations on SAR data acquisition, storage and communication that can lead to data corruption and a resulting de...
متن کاملA New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کامل